首页> 外文OA文献 >Deep Aesthetic Quality Assessment with Semantic Information
【2h】

Deep Aesthetic Quality Assessment with Semantic Information

机译:基于语义信息的深度审美素质评价

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Human beings often assess the aesthetic quality of an image coupled with theidentification of the image's semantic content. This paper addresses thecorrelation issue between automatic aesthetic quality assessment and semanticrecognition. We cast the assessment problem as the main task among a multi-taskdeep model, and argue that semantic recognition task offers the key to addressthis problem. Based on convolutional neural networks, we employ a single andsimple multi-task framework to efficiently utilize the supervision of aestheticand semantic labels. A correlation item between these two tasks is furtherintroduced to the framework by incorporating the inter-task relationshiplearning. This item not only provides some useful insight about the correlationbut also improves assessment accuracy of the aesthetic task. Particularly, aneffective strategy is developed to keep a balance between the two tasks, whichfacilitates to optimize the parameters of the framework. Extensive experimentson the challenging AVA dataset and Photo.net dataset validate the importance ofsemantic recognition in aesthetic quality assessment, and demonstrate thatmulti-task deep models can discover an effective aesthetic representation toachieve state-of-the-art results.
机译:人们通常会评估图像的美学质量以及图像语义内容的识别。本文探讨了自动美学质量评估与语义识别之间的相关性问题。我们将评估问题作为多任务深层模型中的主要任务,并认为语义识别任务是解决该问题的关键。基于卷积神经网络,我们采用一个简单的多任务框架来有效利用美学和语义标签的监督。通过合并任务间关系学习,将这两个任务之间的关联项进一步引入到框架中。该项目不仅提供了有关相关性的有用见解,而且还提高了美学任务的评估准确性。特别是,开发了一种有效的策略来在两个任务之间保持平衡,这有助于优化框架的参数。在具有挑战性的AVA数据集和Photo.net数据集上进行的大量实验验证了语义识别在美学质量评估中的重要性,并证明了多任务深度模型可以发现有效的美学表示以实现最新的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号